


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics, basic tasks, data types    
3 Introduction to D3, basic vis techniques for non-spatial data Project #1 out  
4 Data assimilation and preparation   
5 Data reduction  and notion of similarity and distance   
6 Visual perception and cognition 

7 Visual design and aesthetics Project #1 due 
8 Dimension reduction  Project #2 out 
9 Data mining techniques: clusters, text, patterns, classifiers   

10 Data mining techniques: clusters, text, patterns, classifiers   
11 Computer graphics and volume rendering   
12 Techniques to visualize spatial (3D) data Project #2 due 
13 Scientific and medical visualization Project #3 out 
14 Scientific and medical visualization   
15 Midterm #1 
16 High-dimensional data, dimensionality reduction Project #3 due 
17 Big data: data reduction, summarization 
18 Correlation and causal modeling   
19 Principles of interaction   
20 Visual analytics and the visual sense making process  Final project proposal due 
21 Evaluation and user studies   
22 Visualization of time-varying and time-series data 
23 Visualization of streaming data   
24 Visualization of graph data Final Project preliminary report due 
25 Visualization of text data   
26 Midterm #2   
27 Data journalism   

Final project presentations Final Project slides and final report due 



Data Reduction 



Dimension Reduction 

3D 2D 



Are there attributes that “go together”? 

 

 

 

 

 

 

 

Can you name a few?  

 

 

 

 

 

 

 

 



Physical attributes 

 color 

 number of doors 

 number of wheels 

 retractable roof 

 height  

 length 

 frames around side windows 

 

Which attributes are useful to distinguish SUVs from convertibles? 

 number of doors (4 vs. 2) --> numerical, two levels 

 retractable roof (no vs. yes) --> categorical, two levels  

 frames around side windows (yes vs. no) --> categorical, two levels 

 height (higher vs. lower) --> numerical, many levels 

 



Which attributes are not so useful? 

 number of wheels (constant 4) --> no discriminative power 

 length (short and long SUVs, convertibles) --> confounding  

 color (colors are seemingly random, or are they?) 

 

 

 

 

 

Is color useful? 

 the convertibles seem to have more vibrant colors (red, yellow, …) 

 so maybe we made a discovery   

 



Need to consider more than two attributes 
 height attribute would have distinguished the Range Rover from 

the convertibles and caused it to be and outlier  

retractable  

roof 

frames around  

side windows 

a new type of SUV  



New classes are constantly evolving over time 

 this is known as cluster evolution  

 measuring more features will increase the chance of discovery 

retractable  

roof 

new class: the convertible SUV 

height 

why can empty 

feature spaces 

be interesting or 

useful? 



The more data (examples) the better  

 increases the chances to discover the rare specimen 

 

 

 

 

 

 

 but some attributes are useless  

 we can cull them away 

 perform attribute reduction or dimension reduction  

 



By axis rotation 
 determine a more efficient basis  

 Principal Component Analysis (PCA) 

 Singular value decomposition (SVD) 

 Latent semantic analysis (LSA) 

 

By type transformation 
 determine a more efficient data type 

 Fourier analysis and Wavelets for grids 

 Multidimensional scaling (MSD) for graphs 

 Locally Linear Embedding 

 Isomap 

 Self Organizing Maps (SOM) 

 Linear Discriminant Analysis (LDA) 

 





Covariance 

 measures how much two random variables change together  

 

 

 

 

 

 

For N variable we have N2 variable pairs  

 we can write them in a matrix of size N2  
 the covariance matrix  

 for two variables X1 and X2 



Covariance cov(X,Y) 

 

 

 

 

Pearson’s correlation r  

 is covariance normalized by the individual variances for X and Y 
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Correlation rates between -1 and 1: 

 

 

 

 

Important to note: 

 correlation is defined for linear relationships 

 visualization can help 

 none of these point distributions have correlations: 

 



Analytical: 

 

Samples: 

 

An n-D dataset has n variables x1, x2, … xn  
 define pairwise covariance among all of these variables  

 construct a covariance matrix  

 

 

 

 

 

 a correlation matrix would just list the correlations instead 
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just value distribution (scatterplot matrix) 



Ultimate goal:  

 find a coordinate system that can represent the variance in the 

data with as few axes as possible  

 

 

 

 

 

 

 

 

 rank these axes by the amount of variance (blue, red) 

 drop the axes that have the least variance (red)  
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Component, y1 
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Component, y2 



Find the principal components (factors) of a distribution 

 

First characterize the distribution by  
 covariance matrix Cov 

 correlation matrix Corr 

 lets call it C 

 

 perform QR factorization or LU decomposition to get 

 

 

                     Q: matrix with Eigenvectors 

                     : diagonal matrix with Eigenvalues l 

 

 now order the Eigenvectors in terms of their Eigenvalues l 

1Q Q C
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When to use what? 

 use the covariance matrix when the variable scales are similar  

 use the correlation matrix when the variables are on different 

scales 

 the correlation matrix standardizes the data 

 in general they give different results, especially when the scales 

are different 

 

 

 



Before PCA 
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After PCA 

 l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 
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See other slide sets posted on the course website 

 

Principal Component Analysis (PCA) 

- Theory, Practice, and Examples 

- PCA loadings, and what they mean for analysis   

 



Some familiar faces… 

 



We can reconstruct each face as a linear combination of 

“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)] 

 

+ 

Average Face 

Eigenfaces 



90% variance is 

captured by the first 

50 eigenvectors 

Reconstruct existing 

faces using only 50 

basis images 

We can also generate 

new faces by 

combining 

eigenvectors with 

different weights 

V0 

x ∑ 





MDS is for irregular structures 

 scattered points in high-dimensions (N-D) 

 adjacency matrices 

 

Maps the distances between observations from N-D into low-

D (say 2D) 

 attempts to ensure that differences between pairs of points in this 

reduced space match as closely as possible 



MDS turns a distance matrix into a network or point cloud  
 correlation, cosine, Euclidian, and so on 

 

Suppose you know a matrix of distances among cities 

 

 

 

 

 

 

 

Chicago Raleigh Boston Seattle S.F. Austin Orlando 

Chicago 0 

Raleigh 641 0 

Boston 851 608 0 

Seattle 1733 2363 2488 0 

S.F. 1855 2406 2696 684 0 

Austin 972 1167 1691 1764 1495 0 

Orlando 994 520 1105 2565 2458 1015 0 
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Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Data layout  Attribute layout  



Distance (similarity) metric  

 Euclidian distance (best for data) 

 Cosine distance (best for data) 

 |1-correlation| distance (best for attributes) 

 use 1-correlation to move correlated attribute points closer 

 use | | if you do not care about positive or negative correlations 

 





Data layout  Attribute layout  Combined layout  
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Academic Score 

Athletics 

no dream school here: good athletics, 
 low tuition, high academic score 
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by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000 

 

 

 

 

 

 

Tries to unwrap a high-dimensional surface (A)  manifold 
 noisy points could be averaged first and projected onto the manifold 

 

Algorithm 
 construct neighborhood graph G  (B) 

 for each pair of points in G compute the shortest path distances by adding 
small Euclidian hops (Floyd’s, Dijkstra’s algorithm)  geodesic distances 

 fill similarity matrix with these geodesic distances 

 embed (layout) in low-D (2D) with MDS  (C) 

 



by: S. Roweis, L. Saul, Science, 2000 

Based on simple geometric intuitions. 

 suppose the data consist of N real-valued vectors Xi, each of 

dimensionality D 

 each data point and its neighbors are expected to lie on or close 

to a locally linear patch of the manifold 

 

 

 

Low dimensional Manifold High dimensional Manifold 





Steps: 

 assign K neighbors to each data point  

 compute the weights Wij that best linearly reconstruct the data 

point from its K neighbors, solving the  constrained least-squares 

problem 

 

         έ(W) =  

 

 compute the low-dimensional embedding vectors       best 

reconstructed by Wij 
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Introduced by Teuvo Kohonen 

 unsupervised learning and clustering algorithm 

 has advantages compared to hierarchical clustering 

 often realized as an artificial neural network 

 

SOMs group the data  

 perform a nonlinear projection from N-dimensional input space 

onto two-dimensional visualization space 

 provide a useful topological arrangement of information objects 

in order to display clusters of similar objects in information space 

 



Map a dataset of 3D color vectors into a 2D plane 

 assume you have an image with 5 colors  

 want to see how many there are of each 

 compute an SOM of the color vectors  

 

SOM 



Create array and connect all elements to the N 
input vector dimensions  

 shown here: 2D vector with 44 elements   

 initialize weights  

 

For each input vector chosen at random 
 find node with weights most like the input vector 

 call that node the Best Matching Unit (BMU) 

 find nodes within neighborhood radius r of BMU  

• initially r is chosen as the radius of the lattice 

• diminishes at each time step 

 adjust the weights of the neighboring nodes to 
make them more like the input vector 

• the closer a node is to the BMU, the more its 
weights get altered 





Height represents density or number of documents in the region 

Invented at Pacific Northwest National Lab (PNNL) 







See this excellent page for more detail 

 uses MongoDB as a NoSQL database (non-relational SQL) 

Step 1: Build a python server, say app.py 

 use Flask as the web framework   

Example 1:  
Make an index.html  
file containing  

Run the below from a  
terminal window  

Open a browser and  
go to http://localhost:5000/,  
you will see the message  
Hello World!. 

http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/


Step 2: Add all your processing code to app.py 

 in this case it mainly involves storing data into the database 

Example 2: 
Start the server by 
running python app.py 
Go to (in this example)  
http://localhost:5000/donorsc
hoose/projects 
You will see all the projects 
data printed in the browser. 

http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects


Step 3: Build the charts 

 create a JavaScript file, say, charts.js 

 gets the data from the python URL and other provided JSON files 

 calls function, here makeGraphs(), to do the d3 rendering  

 

 

 

 

 

 

 

 
 

 check the webpage for more detail on how to build the charts 

 

 

wait for data read 



Step 3: Build the charts 

 …. 

 call the renderAll() function for rendering all the charts 

 

 

 

 within index.html need to reference all the charts we defined in 

charts.js   

 for example, if you want to show the US map chart, you will have 

to add the following line below to the index.html file. 

 

 



Start app.py web server  

Add query to the index.html file 

Call http://localhost:5000/ in the browser to see the dashboard 

http://localhost:5000/
http://localhost:5000/
http://localhost:5000/


All files are available in a 

dedicated github repository 

 

 

One more thing: 

https://github.com/adilmoujahid/DonorsChoose_Visualization
https://github.com/adilmoujahid/DonorsChoose_Visualization
https://github.com/adilmoujahid/DonorsChoose_Visualization


http://adilmoujahid.com/posts/2015/01/interactive-data-

visualization-d3-dc-python-mongodb/  

 csv data gets stored in MongoDB (4th most popular database) 

 

http://kyrandale.com/static/talks/pydata-to-the-

web/index.html#/  

 

There are other pages … use google 
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