

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Applications of visual analytics, basic tasks, data types
3 Introduction to D3, basic vis techniques for non-spatial data Project #1 out
4 Data assimilation and preparation
5 Data reduction and notion of similarity and distance
6 Visual perception and cognition

7 Visual design and aesthetics Project #1 due
8 Dimension reduction Project #2 out
9 Data mining techniques: clusters, text, patterns, classifiers

10 Data mining techniques: clusters, text, patterns, classifiers
11 Computer graphics and volume rendering
12 Techniques to visualize spatial (3D) data Project #2 due
13 Scientific and medical visualization Project #3 out
14 Scientific and medical visualization
15 Midterm #1
16 High-dimensional data, dimensionality reduction Project #3 due
17 Big data: data reduction, summarization
18 Correlation and causal modeling
19 Principles of interaction
20 Visual analytics and the visual sense making process Final project proposal due
21 Evaluation and user studies
22 Visualization of time-varying and time-series data
23 Visualization of streaming data
24 Visualization of graph data Final Project preliminary report due
25 Visualization of text data
26 Midterm #2
27 Data journalism

Final project presentations Final Project slides and final report due

Data Reduction

Dimension Reduction

3D 2D

Are there attributes that “go together”?

Can you name a few?

Physical attributes

 color

 number of doors

 number of wheels

 retractable roof

 height

 length

 frames around side windows

Which attributes are useful to distinguish SUVs from convertibles?

 number of doors (4 vs. 2) --> numerical, two levels

 retractable roof (no vs. yes) --> categorical, two levels

 frames around side windows (yes vs. no) --> categorical, two levels

 height (higher vs. lower) --> numerical, many levels

Which attributes are not so useful?

 number of wheels (constant 4) --> no discriminative power

 length (short and long SUVs, convertibles) --> confounding

 color (colors are seemingly random, or are they?)

Is color useful?

 the convertibles seem to have more vibrant colors (red, yellow, …)

 so maybe we made a discovery

Need to consider more than two attributes
 height attribute would have distinguished the Range Rover from

the convertibles and caused it to be and outlier

retractable

roof

frames around

side windows

a new type of SUV

New classes are constantly evolving over time

 this is known as cluster evolution

 measuring more features will increase the chance of discovery

retractable

roof

new class: the convertible SUV

height

why can empty

feature spaces

be interesting or

useful?

The more data (examples) the better

 increases the chances to discover the rare specimen

 but some attributes are useless

 we can cull them away

 perform attribute reduction or dimension reduction

By axis rotation
 determine a more efficient basis

 Principal Component Analysis (PCA)

 Singular value decomposition (SVD)

 Latent semantic analysis (LSA)

By type transformation
 determine a more efficient data type

 Fourier analysis and Wavelets for grids

 Multidimensional scaling (MSD) for graphs

 Locally Linear Embedding

 Isomap

 Self Organizing Maps (SOM)

 Linear Discriminant Analysis (LDA)

Covariance

 measures how much two random variables change together

For N variable we have N2 variable pairs

 we can write them in a matrix of size N2
 the covariance matrix

 for two variables X1 and X2

Covariance cov(X,Y)

Pearson’s correlation r

 is covariance normalized by the individual variances for X and Y

mean of all data item

values xi and yi for

attributes X and Y, resp.

1

2 2

1 1

()()

() ()

n

i i

i
xy

n n

i i

i i

x x y y

r

x x y x



 

 



 



 
individual variances

for attributes X and Y

Correlation rates between -1 and 1:

Important to note:

 correlation is defined for linear relationships

 visualization can help

 none of these point distributions have correlations:

Analytical:

Samples:

An n-D dataset has n variables x1, x2, … xn
 define pairwise covariance among all of these variables

 construct a covariance matrix

 a correlation matrix would just list the correlations instead

(,) [()()]x yCov X Y E X Y   

1

cov ()()
n

xy xy i i

i

x x y y


   

just value distribution (scatterplot matrix)

Ultimate goal:

 find a coordinate system that can represent the variance in the

data with as few axes as possible

 rank these axes by the amount of variance (blue, red)

 drop the axes that have the least variance (red)

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal

Component, y1

2nd Principal

Component, y2

Find the principal components (factors) of a distribution

First characterize the distribution by
 covariance matrix Cov

 correlation matrix Corr

 lets call it C

 perform QR factorization or LU decomposition to get

 Q: matrix with Eigenvectors

 : diagonal matrix with Eigenvalues l

 now order the Eigenvectors in terms of their Eigenvalues l

1Q Q C

4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1
λ2

When to use what?

 use the covariance matrix when the variable scales are similar

 use the correlation matrix when the variables are on different

scales

 the correlation matrix standardizes the data

 in general they give different results, especially when the scales

are different

Before PCA

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8 10 12

Variable X1

V
a
ri

a
b

le
 X

2

PC 1

PC 2

After PCA

 l1 = 9.8783 l2 = 3.0308 Trace = 12.9091

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10 12

PC 1

P
C

 2

See other slide sets posted on the course website

Principal Component Analysis (PCA)

- Theory, Practice, and Examples

- PCA loadings, and what they mean for analysis

Some familiar faces…

We can reconstruct each face as a linear combination of

“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)]

+

Average Face

Eigenfaces

90% variance is

captured by the first

50 eigenvectors

Reconstruct existing

faces using only 50

basis images

We can also generate

new faces by

combining

eigenvectors with

different weights

V0

x ∑

MDS is for irregular structures

 scattered points in high-dimensions (N-D)

 adjacency matrices

Maps the distances between observations from N-D into low-

D (say 2D)

 attempts to ensure that differences between pairs of points in this

reduced space match as closely as possible

MDS turns a distance matrix into a network or point cloud
 correlation, cosine, Euclidian, and so on

Suppose you know a matrix of distances among cities

Chicago Raleigh Boston Seattle S.F. Austin Orlando

Chicago 0

Raleigh 641 0

Boston 851 608 0

Seattle 1733 2363 2488 0

S.F. 1855 2406 2696 684 0

Austin 972 1167 1691 1764 1495 0

Orlando 994 520 1105 2565 2458 1015 0

𝐸 = 𝐷𝑖𝑗 − 𝑑𝑖𝑗
2

𝑁

𝑖<𝑗

Spring-like system

 insert springs within each node

 the length of the spring encodes the desired node distance

 start at an initial configuration

 iteratively move nodes until an energy minimum is reached

Spring-like system

 insert springs within each node

 the length of the spring encodes the desired node distance

 start at an initial configuration

 iteratively move nodes until an energy minimum is reached

Data layout Attribute layout

Distance (similarity) metric

 Euclidian distance (best for data)

 Cosine distance (best for data)

 |1-correlation| distance (best for attributes)

 use 1-correlation to move correlated attribute points closer

 use | | if you do not care about positive or negative correlations

Data layout Attribute layout Combined layout

D1

....

Vn

V1

V2

V3

Dm

D2

....

D1

D2

D3

Dm

V1

V2

Vn

Tuition

Academic Score

Athletics

no dream school here: good athletics,
 low tuition, high academic score

tuition <
financial
means

tuition >
financial means

1 2

3

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000

Tries to unwrap a high-dimensional surface (A)  manifold
 noisy points could be averaged first and projected onto the manifold

Algorithm
 construct neighborhood graph G  (B)

 for each pair of points in G compute the shortest path distances by adding
small Euclidian hops (Floyd’s, Dijkstra’s algorithm)  geodesic distances

 fill similarity matrix with these geodesic distances

 embed (layout) in low-D (2D) with MDS  (C)

by: S. Roweis, L. Saul, Science, 2000

Based on simple geometric intuitions.

 suppose the data consist of N real-valued vectors Xi, each of

dimensionality D

 each data point and its neighbors are expected to lie on or close

to a locally linear patch of the manifold

Low dimensional Manifold High dimensional Manifold

Steps:

 assign K neighbors to each data point

 compute the weights Wij that best linearly reconstruct the data

point from its K neighbors, solving the constrained least-squares

problem

 έ(W) =

 compute the low-dimensional embedding vectors best

reconstructed by Wij

iX


iY


 
j

jij

i

i XWX 2||


 
i j

jijYWYY 2||)(


iY


Introduced by Teuvo Kohonen

 unsupervised learning and clustering algorithm

 has advantages compared to hierarchical clustering

 often realized as an artificial neural network

SOMs group the data

 perform a nonlinear projection from N-dimensional input space

onto two-dimensional visualization space

 provide a useful topological arrangement of information objects

in order to display clusters of similar objects in information space

Map a dataset of 3D color vectors into a 2D plane

 assume you have an image with 5 colors

 want to see how many there are of each

 compute an SOM of the color vectors

SOM

Create array and connect all elements to the N
input vector dimensions

 shown here: 2D vector with 44 elements

 initialize weights

For each input vector chosen at random
 find node with weights most like the input vector

 call that node the Best Matching Unit (BMU)

 find nodes within neighborhood radius r of BMU

• initially r is chosen as the radius of the lattice

• diminishes at each time step

 adjust the weights of the neighboring nodes to
make them more like the input vector

• the closer a node is to the BMU, the more its
weights get altered

Height represents density or number of documents in the region

Invented at Pacific Northwest National Lab (PNNL)

See this excellent page for more detail

 uses MongoDB as a NoSQL database (non-relational SQL)

Step 1: Build a python server, say app.py

 use Flask as the web framework

Example 1:
Make an index.html
file containing

Run the below from a
terminal window

Open a browser and
go to http://localhost:5000/,
you will see the message
Hello World!.

http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/

Step 2: Add all your processing code to app.py

 in this case it mainly involves storing data into the database

Example 2:
Start the server by
running python app.py
Go to (in this example)
http://localhost:5000/donorsc
hoose/projects
You will see all the projects
data printed in the browser.

http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects

Step 3: Build the charts

 create a JavaScript file, say, charts.js

 gets the data from the python URL and other provided JSON files

 calls function, here makeGraphs(), to do the d3 rendering

 check the webpage for more detail on how to build the charts

wait for data read

Step 3: Build the charts

 ….

 call the renderAll() function for rendering all the charts

 within index.html need to reference all the charts we defined in

charts.js

 for example, if you want to show the US map chart, you will have

to add the following line below to the index.html file.

Start app.py web server

Add query to the index.html file

Call http://localhost:5000/ in the browser to see the dashboard

http://localhost:5000/
http://localhost:5000/
http://localhost:5000/

All files are available in a

dedicated github repository

One more thing:

https://github.com/adilmoujahid/DonorsChoose_Visualization
https://github.com/adilmoujahid/DonorsChoose_Visualization
https://github.com/adilmoujahid/DonorsChoose_Visualization

http://adilmoujahid.com/posts/2015/01/interactive-data-

visualization-d3-dc-python-mongodb/

 csv data gets stored in MongoDB (4th most popular database)

http://kyrandale.com/static/talks/pydata-to-the-

web/index.html#/

There are other pages … use google

http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html
http://kyrandale.com/static/talks/pydata-to-the-web/index.html

