CSE 564
VISUALIZATION & VISUAL ANALYTICS

DIMENSION REDUCTION

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT
STONY BROOK UNIVERSITY



Lecture
1

O OO N OOV A~AWN

NINNNNNNNRRRRRRRRRR
N bhWNROWVO®NOGOOGOVDDWNIERERO

Topic
Intro, schedule, and logistics
Applications of visual analytics, basic tasks, data types
Introduction to D3, basic vis techniques for non-spatial data
Data assimilation and preparation
Data reduction and notion of similarity and distance
Visual perception and cognition

Visual design and aesthetics

Dimension reduction

Data mining techniques: clusters, text, patterns, classifiers
Data mining techniques: clusters, text, patterns, classifiers
Computer graphics and volume rendering
Techniques to visualize spatial (3D) data

Scientific and medical visualization

Scientific and medical visualization

Midterm #1

High-dimensional data, dimensionality reduction
Big data: data reduction, summarization

Correlation and causal modeling

Principles of interaction

Visual analytics and the visual sense making process
Evaluation and user studies

Visualization of time-varying and time-series data
Visualization of streaming data

Visualization of graph data

Visualization of text data

Midterm #2

Data journalism

Final project presentations

Projects

Project #1 out

Project #1 due
Project #2 out

Project #2 due

Project #3 out

Project #3 due

Final project proposal due

Final Project preliminary report due

Final Project slides and final report due



L AST LECTURE'S THEME -

Data Reduction



THIS LECTURE'S THEME -:

Dimension Reduction



MEASURE OF ATTRIBUTE SIMILARITY

Are there attributes that “go together”?

Can you name a few?

88’ soct;gativ

oy MasteryConnect



FEATURE VECTOR (1)

Physical attributes
= color
= number of doors
= number of wheels
= retractable roof
= height
= length
= frames around side windows

Which attributes are useful to distinguish SUVs from convertibles?
= number of doors (4 vs. 2) --> numerical, two levels
= retractable roof (no vs. yes) --> categorical, two levels
= frames around side windows (yes vs. no) --> categorical, two levels
» height (higher vs. lower) --> numerical, many levels



FEATURE VECTOR (2)

Which attributes are not so useful?
= number of wheels (constant 4) --> no discriminative power
= length (short and long SUVs, convertibles) --> confounding
= color (colors are seemingly random, or are they?)

Is color useful?
= the convertibles seem to have more vibrant colors (red, yellow, ...)
= 50 maybe we made a discovery



ATTRIBUTE SPACE

retractable
roof

>

a new type of SUV

frames around
side windows

Need to consider more than two attributes

= height attribute would have distinguished the Range Rover from
the convertibles and caused it to be and outlier



ATTRIBUTE SPACE

retractable
roof

>

why can empty
feature spaces
be interesting or

?
useful? \

socrative

by MasteryConnect

New classes are constantly evolving over time
= this is known as cluster evolution

measuring more features will increase the chance of discovery



How MANY DATA DO WE NEED?

The more data (examples) the better
= increases the chances to discover the rare specimen

= but some attributes are useless
= we can cull them away
= perform attribute reduction or dimension reduction



DIMENSIONALITY REDUCTION

By axis rotation
= determine a more efficient basis
»  Principal Component Analysis (PCA)
= Singular value decomposition (SVD)
= Latent semantic analysis (LSA)

By type transformation
= determine a more efficient data type
= Fourier analysis and Wavelets for grids
= Multidimensional scaling (MSD) for graphs
» Locally Linear Embedding
= |somap
= Self Organizing Maps (SOM)
= Linear Discriminant Analysis (LDA)



PRINCIPAL COMPONENT ANALYSIS (PCA)




SOME THEORY IS NEEDED

Covariance
= measures how much two random variables change together

COVARIANCE

Large Negative Near Zero Large Positive
Covariance Covariance  Covariance

For N variable we have N2 variable pairs
= we can write them in a matrix of size N2 = the covariance matrix
= for two variables X; and X,

VarfX] - Var[X;]  CovlAy.43]

Gm'[fLX]] vEI[Ig]



FORMULAE

Covariance cov(X,Y) mean of all data item
% values x; and y; for
attributes X and Y, resp.

COV(X,Y) = Z?zl(xi_ X)l (Y‘ - ?)

Pearson’s correlation r
= s covariance normalized by the individual variances for X and Y
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CORRELATION PATTERNS

Correlation rates between -1 and 1:
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Important to note:
= correlation is defined for linear relationships
= visualization can help
= none of these point distributions have correlations:
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COVARIANCE MATRIX

Analytical:  Cov(X,Y)=E[(X =z )(Y — 1,)]

n
Samples: o, =cov,, =3 (% ~X)(y;, = V)
i=1
An n-D dataset has n variables x,, x,, ... x,
= define pairwise covariance among all of these variables
= construct a covariance matrix

O O O,
Gy Ggp 0 Og
T=Cov(X)= _ - -
_Jrzl UHE sz |

= 3 correlation matrix would just list the correlations instead



CORRELATION MATRIX

MO FP MP IM IC FM FE FI SPC DSC DST
MO 1.00
FP 0.31° 1.00
MP 0.32° 0.71° 1.00
IM 0.36% 0.12¢ 0.14 1.00
IC 0.39° 0.18 0.21 0.62° 1.00
FM 0.26° 0.21° 0.14¢ 0.30° 0.27° 1.00
FE 0.47° 0.21° 0.18° 0.38° 0.28° 0.24° 1.00
Fl 0.53% 0.26% 0.22% 0.36% 0.37¢ 0.29% 0.47% 1.00
SPC 0.32° 0.22° 0.31° 0.51° 0.47° 0.32° 0.37% 0.35% 1.00
DSC -0.12¢ 0.03¢ 0.05°¢ 0.17° 0.08¢ 0.18° —0.05¢ 0.06¢ 0.01¢ 1.00
DST —-0.02¢ -0.01¢ 0.05°¢ 0.24° 0.14¢ 0.05¢ —0.05¢ 0.05¢ 0.05¢ 0.56° 1.00
DM 0.05¢ 0.144 0.136° 0.199" 0.169° 0.247% 0.08¢ 0.11¢ 0.14¢ 0.46° 0.71°
£2z3% %gaﬁzmag&gggﬁgﬂu;k Climatic predictors
3388 880 B0EEEREFUEEERRASRELAE —
o B H
gg:i:w “: WetDays
. | o
LGALS?&;f N I . F - 4 TempJuly
PCEP: |

Hus1
UBE28
TOP2E | | .
yPELS | | ] :H =
cenot_|_| ‘

HMGET |
PTIA M | |

uBgac] ]
GNB2L1

DNM 1
EPB4ILY

capq
ruce ol i = =
FABPS

APOL|

cPTIg |
ACSL: H I
SEPP1

GLU | |

GPX1 L1 [l |

——
A B C D E

just value distribution (scatterplot matrix)



PRINCIPAL COMPONENT ANALYSIS

Ultimate goal:

= find a coordinate system that can represent the variance in the
data with as few axes as possible
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= rank these axes by the amount of variance (blue, red)
= drop the axes that have the least variance (red)



PRINCIPAL COMPONENTS
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PCA - HOw TO DO

Find the principal components (factors) of a distribution

First characterize the distribution by
= covariance matrix Cov

= correlation matrix Corr
. Jets call it C

= perform QR factorization or LU decomposition to get
C=QAQ™

Q: matrix with Eigenvectors
A: diagonal matrix with Eigenvalues A

= now order the Eigenvectors in terms of their Eigenvalues A



FIGENVECTORS AND VALUES

Ay

4.0 4.5 5.0 5.5 6.0



COVARIANCE VS. CORRELATION

When to use what?
= yse the covariance matrix when the variable scales are similar

= yse the correlation matrix when the variables are on different
scales

= the correlation matrix standardizes the data

= in general they give different results, especially when the scales
are different



- XAMPLE

Before PCA

Variable X,

Variable X;




- XAMPLE

After PCA
= 1,=9.8783 4, =3.0308 Trace = 12.9091
= PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance




MORE INFO ON PCA

See other slide sets posted on the course website

Principal Component Analysis (PCA)
- Theory, Practice, and Examples
- PCA loadings, and what they mean for analysis



PCA APPLIED TO FACES

Some familiar faces...
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PCA APPLIED TO FACES

We can reconstruct each face as a linear combination of
“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)]

Average Face
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Eigenfaces



RECONSTRUCTION USING PCA

original image reconstructed with 50 eigenfaces

90% variance is
captured by the first
50 eigenvectors

Reconstruct existing
faces using only 50
basis images

We can also generate o
new faces by j:;/ | 4 B . @
combining ° MV\MMW . E 3 B2
eigenvectors with -t LI
different weights =




TRANSFORMATIONS



MULTIDIMENSIONAL SCALING (MDS)

MDS is for irregular structures
= scattered points in high-dimensions (N-D)
= adjacency matrices

Maps the distances between observations from N-D into low-
D (say 2D)

= attempts to ensure that differences between pairs of points in this
reduced space match as closely as possible



DISTANCE MATRIX

MDS turns a distance matrix into a network or point cloud
= correlation, cosine, Euclidian, and so on

Suppose you know a matrix of distances among cities

Chicago Raleigh Boston Seattle S.F. Austin Orlando
Chicago 0
Raleigh 641 0
Boston 851 608 0
Seattle 1733 2363 2488 0
S.F. 1855 2406 2696 684 0
Austin 972 1167 1691 1764 1495 0

Orlando 994 520 1105 2565 2458 1015 0
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COMPARE WITH REAL MAP
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MDS ALGORITHM

e TJask:

Find that configuration of image
points whose pairwise distances

are most similar to the original
inter-point distances !!!
e Formally:
Define: D, =llx; -x; Il d;=lly; -y,

Claim: Dij = dij 7i, je [1,n] X D.

e In general: an exact solution is not
possible !!!

e Inter Point distances = invariance
features




MDS ALGORITHM

Strategy (of metric MDS):
& iterative procedure to find a good configuration of image points

1) Initialization
- Begin with some (arbitrary) initial configuration

2) Alter the image points and try to find a configuration of points
that minimizes the following sum-of-squares error function:



MDS ALGORITHM

Strategy (of metric MDS):
& iterative procedure to find a good configuration of image points

1) Initialization
- Begin with some (arbitrary) initial configuration

2) Alter the image points and try to find a configuration of points
that minimizes the following sum-of-squares error function:

N
2
E = E(Dij — dyj)

i<j



FORCE-DIRECTED ALGORITHM

Spring-like system
» insert springs within each node
= the length of the spring encodes the desired node distance
= start at an initial configuration
= jteratively move nodes until an energy minimum is reached

S



FORCE-DIRECTED ALGORITHM

Spring-like system
» insert springs within each node
= the length of the spring encodes the desired node distance
= start at an initial configuration
= jteratively move nodes until an energy minimum is reached

Vertex layout by correlations. o



USES OF MDS

Data layout Attribute layout




USES OF MDS

Distance (similarity) metric
= Euclidian distance (best for data)
= Cosine distance (best for data)
= |1-correlation| distance (best for attributes)
= use 1-correlation to move correlated attribute points closer
= use || if you do not care about positive or negative correlations



MDS EXAMPLES
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COMBINE DATA AND ATTRIBUTE LAYOUTS

Data layout Attribute layout Combined layout




ACHIEVED BY JOINT MATRIX
OPTIMIZATION




EXAMPLE COLLEGE SELECTION

tuition <
financial

tuition >
financial means

no dream school here: good athletics,
low tuition, high academic score



THE DATA CONTEXT MAP

Data Context Map:
Choose a Good University
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MDS EXAMPLES
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MANIFOLD LEARNING: ISOMAP

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000

A B C

Tries to unwrap a high-dimensional surface (A) 2 manifold
=  noisy points could be averaged first and projected onto the manifold

Algorithm
= construct neighborhood graph G - (B)

= for each pair of points in G compute the shortest path distances by adding
small Euclidian hops (Floyd's, Dijkstra’s algorithm) = geodesic distances

= fill similarity matrix with these geodesic distances
=  embed (layout) in low-D (2D) with MDS - (C)



MANIFOLD LEARNING:

| OCALLY LINEAR EMBEDDING (LLE)

by: S. Roweis, L. Saul, Science, 2000

Based on simple geometric intuitions.

= suppose the data consist of N real-valued vectors X;, each of
dimensionality D

» each data point and its neighbors are expected to lie on or close
to a locally linear patch of the manifold
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LLE OVERVIEW
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Steps:

LLE DETAILS

—_

assign K neighbors to each data point X;

compute the weights W; that best linearly reconstruct the data
point from its K neighbors, solving the constrained least-squares
problem

ey = D X = D Wi X |2 > Wi =1
i j :

compute the low-dimensional embedding vectors Yi best
reconstructed by W;

D(Y) = ZlY Z\Nljj



SELF-ORGANIZING MAPS (SOM)

Introduced by Teuvo Kohonen
= unsupervised learning and clustering algorithm
» has advantages compared to hierarchical clustering
= often realized as an artificial neural network

SOMs group the data

= perform a nonlinear projection from N-dimensional input space
onto two-dimensional visualization space

= provide a useful topological arrangement of information objects
in order to display clusters of similar objects in information space



SOM EXAMPLE

Map a dataset of 3D color vectors into a 2D plane
= assume you have an image with 5 colors
= want to see how many there are of each
= compute an SOM of the color vectors

SOM




SOM ALGORITHM

Create array and connect all elements to the N
input vector dimensions

= shown here: 2D vector with 4x4 elements

= |nitialize weights

For each input vector chosen at random
= find node with weights most like the input vector
= call that node the Best Matching Unit (BMU)
= find nodes within neighborhood radius r of BMU
« initially ris chosen as the radius of the lattice
« diminishes at each time step

= adjust the weights of the neighboring nodes to
make them more like the input vector

* the closer a node is to the BMU, the more its
weights get altered




SOM EXAMPLE: POVERTY MAP

SOM — Result Example

World Poverty Map s e
A SOM has been used to classify
statistical data describing various e - °
quality-of-life factors such as state of "* =
health, nutrition, educational services
etc. . Countries with similar quality-
of-life factors end up clustered .
together. The countries with better
quality-of-life are situated toward the
upper left and the most poverty
stricken countries are toward the lower
right.

‘Poverty map’ based on 39
indicators from World Bank

statistics (1992)



SOM EXAMPLE: THEMESCAPE

Height represents density or number of documents in the region
Invented at Pacific Northwest National Lab (PNNL)



SOM / MDS EXAMPLE:
VXINSIGHT (SANDIA)
|

e




PRACTICAL ASPECTS



COUPLING D3 WITH PYTHON

See this excellent page for more detail
= uses MongoDB as a NoSQL database (non-relational SQL)

Step 1: Build a python server, say app.py  example 1:

= use Flask as the web framework Make an index.html

file containing

from flask import Flask
from flask import render_template

¢h1>*Hello World!</hl>

Run the below from a

app = Flask(__name__)
terminal window

@app.route(”/")
def ():
return render_template("index.html"™)

$ python app.py

_ Open a browser and
if name == " _ mainm_ ":
— ) - i go to http://localhost:5000/,
app.run{host="8.8.8.8",port=5808,debug=True) )
you will see the message
Hello World!.



http://adilmoujahid.com/posts/2015/01/interactive-data-visualization-d3-dc-python-mongodb/

COUPLING D3 WITH PYTHON

Step 2: Add all your processing code to app.py

= in this case it mainly involves storing data into the database

1 render_template("index.html™)

@app.route("/donorschoose/projects”)

et ():
connection = MongoClient(MONGODB HOST, MONGODB PORT)
collection = connection[DBS_NAME][COLLECTION_NAME]
projects = collection.find{projection=FIELDS)
json_projects = []
for project in projects:

json_projects.append{project)

Example 2:

Start the server by

running python app.py

Go to (in this example)
http://localhost:5000/donorsc
hoose/projects

You will see all the projects
data printed in the browser.

json_projects = json.dumps(json_projects, default=json_util.default)

connection.close()
return json_ projects

app.run{host="0.8.08.8",port=5000,debug=True)



http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects
http://localhost:5000/donorschoose/projects

COUPLING D3 WITH PYTHON

Step 3: Build the charts

create a JavaScript file, say, chartsjs
= gets the data from the python URL and other provided JSON files
= calls function, here makeGraphs(), to do the d3 rendering

- wait for data read

» check the webpage for more detail on how to build the charts



COUPLING D3 WITH PYTHON

Step 3: Build the charts

call the renderAll() function for rendering all the charts

within index.html need to reference all the charts we defined in
charts.s

for example, if you want to show the US map chart, you will have
to add the following line below to the index.html file.




COUPLING D3 WITH PYTHON

Start app.py web server
Add query to the index.html file
Call http://localhost:5000/ in the browser to see the dashboard

« © ff | localhost:5000 w o H P e =

low poverty
I 49400000000 fwinumosofDonsos ot DonaionsinUSD

| Trips moderate poverty

Mo 1 92 9 2 86 M
||||||| T T T T ™ i ;
0 50,000 100,000 150,000 200,000 250,000 L] 100,000 200,000 300,000 400,000



http://localhost:5000/
http://localhost:5000/
http://localhost:5000/

FOLDER STRUCTURE

All files are available in a v B sl
dedicated github repository Yoot
= ’ - W custom.css
¥ [ geojson
us-states.json
v js
W graphs.js
One more thing: v b
v B8 css
W bootstrap.min.css
JSON IS THE GLUE BETWEEN PYTHON AND JS " docss
® keen-dashboards.css
v is
W bootstrap.min.js
W crossfilter.js
N d3.js
Javascript ® dc.js
N keen.min.js
§ : W queue.js
Rython v I templates

€ index.html


https://github.com/adilmoujahid/DonorsChoose_Visualization
https://github.com/adilmoujahid/DonorsChoose_Visualization
https://github.com/adilmoujahid/DonorsChoose_Visualization

SOME USEFUL PAGES

http://adilmoujahid.com/posts/2015/01/interactive-data-
visualization-d3-dc-python-mongodb/
= csv data gets stored in MongoDB (4t most popular database)

http://kyrandale.com/static/talks/pydata-to-the-
web/index.html#/

There are other pages ... use google
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